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Preface
Objectives
A primary objective in a first course in mechanics is to help develop a stu-
dent’s ability first to analyze problems in a simple and logical manner, and 
then to apply basic principles to their solutions. A strong conceptual under-
standing of these basic mechanics principles is essential for successfully 
solving mechanics problems. We hope this text will help instructors achieve 
these goals.

General Approach
Vector algebra is introduced at the beginning of the Statics volume and is used 
in the presentation of the basic principles of statics, as well as in the solution 
of many problems, particularly three-dimensional problems. Similarly, the 
concept of vector differentiation is introduced early in the Dynamics volume, 
and vector analysis is used throughout the presentation of dynamics. This 
approach leads to more concise derivations of the fundamental principles of 
mechanics. It also makes it possible to analyze many problems in kinematics 
and kinetics which could not be solved by scalar methods. The emphasis in 
this text, however, remains on the correct understanding of the principles of 
mechanics and on their application to the solution of engineering problems, 
and vector analysis is presented chiefly as a convenient tool.†

Practical Applications Are Introduced Early.  One of the characteris-
tics of the approach used in this book is that mechanics of particles is clearly 
separated from the mechanics of rigid bodies. This approach makes it possible 
to consider simple practical applications at an early stage and to postpone the 
introduction of the more difficult concepts. For example:

∙	 In Statics, the statics of particles is treated first, and the principle of 
equilibrium of a particle is immediately applied to practical situations 
involving only concurrent forces. The statics of rigid bodies is consid-
ered later, at which time the vector and scalar products of two vectors are 
introduced and used to define the moment of a force about a point and 
about an axis.

∙	 In Dynamics, the same division is observed. The basic concepts of 
force, mass, and acceleration, of work and energy, and of impulse and 
momentum are introduced and first applied to problems involving only 
particles. Thus, students can familiarize themselves with the three 
basic methods used in dynamics and learn their respective advan-
tages before facing the difficulties associated with the motion of rigid 
bodies.
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2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 
discuss how to add forces by using their components, especially rectangular 
components. This method is often the most convenient way to add forces and, 
in practice, is the most common approach. (Note that we can readily extend the 
properties of vectors established in this section to the rectangular components 
of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components 
of a Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that are 
perpendicular to each other. Figure 2.14 shows a force F resolved into a compo-
nent Fx along the x axis and a component Fy along the y axis. The parallelogram 
drawn to obtain the two components is a rectangle, and Fx and Fy are called 
rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, respec-
tively, as in Fig. 2.14; they may, however, be chosen in any two perpendicular 
directions, as shown in Fig. 2.15. In determining the rectangular components of 
a force, you should think of the construction lines shown in Figs. 2.14 and 2.15 
as being parallel to the x and y axes, rather than perpendicular to these axes. 
This practice will help avoid mistakes in determining oblique components, as 
in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rectangular 
components, we introduce two vectors of unit magnitude, directed respectively 
along the positive x and y axes. These vectors are called unit vectors and are 
denoted by i and j, respectively (Fig. 2.16). Recalling the definition of the prod-
uct of a scalar and a vector given in Sec. 2.1C, note that we can obtain the rect-
angular components Fx and Fy of a force F by multiplying respectively the unit 
vectors i and j by appropriate scalars (Fig. 2.17). We have

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

The scalars Fx and Fy may be positive or negative, depending upon the sense 
of Fx and of Fy, but their absolute values are equal to the magnitudes of the 
component forces Fx and Fy, respectively. The scalars Fx and Fy are called the 
 scalar  components of the force F, whereas the actual component forces Fx and 
Fy should be referred to as the vector components of F. However, when there 
exists no possibility of confusion, we may refer to the vector as well as the scalar 
components of F as simply the components of F. Note that the scalar component 
Fx is positive when the vector component Fx has the same sense as the unit vector 
i (i.e., the same sense as the positive x axis) and is negative when Fx has the oppo-
site sense. A similar conclusion holds for the sign of the scalar component Fy.

Scalar Components. Denoting by F the magnitude of the force F and 
by θ the angle between F and the x axis, which is measured counterclockwise 

Fig. 2.14 Rectangular components of a 
force F.

O

F
Fy

Fx
x

y

θ

Fig. 2.15 Rectangular components of a 
force F for axes rotated away from horizontal 
and vertical.

Fy
Fx

F
x

y

O

θ

Fig. 2.17 Expressing the components 
of F in terms of unit vectors with scalar 
multipliers.

F

x

y

Fy = Fy j = F sin θj

Fx = Fx i = F cos θi

j

i

θ

Fig. 2.16 Unit vectors along the x and y 
axes.

x

y

Magnitude = 1j

i

†In a parallel text, Mechanics for Engineers, fifth edition, the use of vector algebra is limited 
to the addition and subtraction of vectors, and vector differentiation is omitted.
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New Concepts Are Introduced in Simple Terms.  New concepts are 
presented in simple terms and every step is explained in detail. On the other 
hand, by discussing the broader aspects of the problems considered, and by 
stressing methods of general applicability, a definite maturity of approach has 
been achieved. For example, the concept of potential energy is discussed in 
the general case of a conservative force. Also, the study of the plane motion of 
rigid bodies is designed to lead naturally to the study of their general motion 
in space. This is true in kinematics as well as in kinetics, where the princi-
ple of equivalence of external and effective forces is applied directly to the 
analysis of plane motion, thus facilitating the transition to the study of three-
dimensional motion.

Fundamental Principles Are Placed in the Context of Simple 
Applications.  The fact that mechanics is essentially a deductive science 
based on a few fundamental principles is stressed. Derivations have been pre-
sented in their logical sequence and with all the rigor warranted at this level. 
However, the learning process is largely inductive, and simple applications are 
considered first. For example:

∙	 The statics of particles precedes the statics of rigid bodies, and problems 
involving internal forces are postponed until Chap. 6.

∙	 In Chap. 4, equilibrium problems involving only coplanar forces are con-
sidered first and solved by ordinary algebra, while problems involving 
three-dimensional forces and requiring the full use of vector algebra are 
discussed in the second part of the chapter.

∙	 The kinematics of particles (Chap. 11) precedes the kinematics of rigid 
bodies (Chap. 15).

∙	 The fundamental principles of the kinetics of rigid bodies are first applied 
to the solution of two-dimensional problems (Chaps. 16 and 17), which 
can be more easily visualized by the student, while three-dimensional 
problems are postponed until Chap. 18.

The Presentation of the Principles of Kinetics Is Unified.  The 
twelfth edition of Vector Mechanics for Engineers retains the unified presen-
tation of the principles of kinetics which characterized the previous eleven 
editions. The concepts of linear and angular momentum are introduced in 
Chap. 12 so that Newton’s second law of motion can be presented not only in 
its conventional form  F = ma, but also as a law relating, respectively, the sum 
of the forces acting on a particle and the sum of their moments to the rates of 
change of the linear and angular momentum of the particle. This makes possi-
ble an earlier introduction of the principle of conservation of angular momen-
tum and a more meaningful discussion of the motion of a particle under a 
central force (Sec. 12.3A). More importantly, this approach can be readily 
extended to the study of the motion of a system of particles (Chap. 14) and 
leads to a more concise and unified treatment of the kinetics of rigid bodies in 
two and three dimensions (Chaps. 16 through 18).

Systematic Problem-Solving Approach.  All the sample problems are 
solved using the steps of Strategy, Modeling, Analysis, and Reflect & Think, or 
the “SMART” approach. This methodology is intended to give students confi-
dence when approaching new problems, and students are encouraged to apply 
this approach in the solution of all assigned problems.
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17.1  ENERGY METHODS FOR  
A RIGID BODY

We now use the principle of work and energy to analyze the plane motion of 
rigid bodies. As we pointed out in Chap. 13, the method of work and energy is 
particularly well-adapted to solving problems involving velocities and displace-
ments. Its main advantage is that the work of forces and the kinetic energy of 
objects are scalar quantities.

17.1A Principle of Work and Energy
To apply the principle of work and energy to the motion of a rigid body, we 
again assume that the rigid body is made up of a large number n of particles of 
mass Δmi. From Eq. (14.30) of Sec. 14.2B, we have

Principle of work  
and energy, rigid body

   T  1   +  U  1→2   =  T  2    (17.1)

where T1, T2 =  the initial and final values of total kinetic energy of particles 
forming the rigid body 

   U1→2 = work of all forces acting on various particles of the body

Just as we did in Chap. 13, we can express the work done by nonconserva-
tive forces as   U  1→2  NC   , and we can define potential energy terms for conservative 
forces. Then we can express Eq. (17.1) as

   T  1   +  V   g  1     +  V   e  1     +  U  1→2  NC   =  T  2   +  V   g  2     +  V   e  2      (17.1′)

where   V   g  1      and   V   g  2      are the initial and final gravitational potential energy of the 
center of mass of the rigid body with respect to a reference point or datum, and   
V   e  1      and   V   e  2      are the initial and final values of the elastic energy associated with 
springs in the system.

We obtain the total kinetic energy

  T =   1 __ 
2
      ∑ 

i=1
  

n

    Δ m  i    v  i  2   (17.2)

by adding positive scalar quantities, so it is itself a positive scalar quantity. You 
will see later how to determine T for various types of motion of a rigid body.

The expression U1→2 in Eq. (17.1) represents the work of all the forces 
acting on the various particles of the body, whether these forces are internal 
or external. However, the total work of the internal forces holding together 
the particles of a rigid body is zero. To see this, consider two particles A 
and B of a rigid body and the two equal and opposite forces F and −F they 
exert on each other (Fig. 17.1). Although, in general, small displacements dr 
and  d r′  of the two particles are different, the components of these displace-
ments along AB must be equal; otherwise, the particles would not remain at 
the same distance from each other and the body would not be rigid. Therefore, 
the work of F is equal in magnitude and opposite in sign to the work of −F, 

Photo 17.1 The work done by friction 
reduces the kinetic energy of the wheel.  
©Richard McDowell/Alamy RF

Fig. 17.1 The total work of the internal 
forces acting on the particles of a rigid body 
is zero.

A

B

A'

B'

F

–F
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Free-Body Diagrams Are Used Both to Solve Equilibrium 
Problems and to Express the Equivalence of Force 
Systems.  Free-body diagrams are introduced early in Statics, and their 
importance is emphasized throughout. They are used not only to solve 
equilibrium problems but also to express the equivalence of two systems 
of forces or, more generally, of two systems of vectors. In Dynamics we 
introduce a kinetic diagram, which is a pictorial representation of inertia 
terms. The advantage of this approach becomes apparent in the study of the 
dynamics of rigid bodies, where it is used to solve three-dimensional as well 
as two-dimensional problems. By placing the emphasis on the free-body 
diagram and kinetic diagram, rather than on the standard algebraic equa-
tions of motion, a more intuitive and more complete understanding of the 
fundamental principles of dynamics can be achieved. This approach, which 
was first introduced in 1962 in the first edition of Vector Mechanics for 
Engineers, has now gained wide acceptance among mechanics teachers in 
this country. It is, therefore, used in preference to the method of dynamic 
equilibrium and to the equations of motion in the solution of all sample 
problems in this book.

A Careful Balance between SI and U.S. Customary Units Is 
Consistently Maintained.  Because of the current trend in the American 
government and industry to adopt the international system of units (SI met-
ric units), the SI units most frequently used in mechanics are introduced in 
Chap. 1 and are used throughout the text. Approximately half of the sample 
problems and 60 percent of the homework problems are stated in these units, 
while the remainder are in U.S. customary units. The authors believe that this 
approach will best serve the need of the students, who, as engineers, will have 
to be conversant with both systems of units.

It also should be recognized that using both SI and U.S. customary 
units entails more than the use of conversion factors. Since the SI system 
of units is an absolute system based on the units of time, length, and mass, 
whereas the U.S. customary system is a gravitational system based on the 
units of time, length, and force, different approaches are required for the 
solution of many problems. For example, when SI units are used, a body 
is generally specified by its mass expressed in kilograms; in most problems 
of statics it will be necessary to determine the weight of the body in new-
tons, and an additional calculation will be required for this purpose. On 
the other hand, when U.S. customary units are used, a body is specified 
by its weight in pounds and, in dynamics problems, an additional calcula-
tion will be required to determine its mass in slugs (or lb•s2/ft). The authors, 
therefore, believe that problem assignments should include both systems of 
units.

The Instructor’s and Solutions Manual provides six different lists of 
assignments so that an equal number of problems stated in SI units and in 
U.S. customary units can be selected. If so desired, two complete lists of 
assignments can also be selected with up to 75 percent of the problems stated 
in SI units.

Optional Sections Offer Advanced or Specialty Topics.  A large 
number of optional sections have been included. These sections are indi-
cated by asterisks and thus are easily distinguished from those which form the  
core of the basic course. They can be omitted without prejudice to the under-
standing of the rest of the text.
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Remark: Because all the forces are contained in the plane of the figure, 
you would expect the sum of their moments to be perpendicular to that plane. 
Note that you could obtain the moment of each force component directly from 
the diagram by first forming the product of its magnitude and perpendicular 
distance to O and then assigning to this product a positive or a negative sign, 
depending upon the sense of the moment.

 b. Single Tugboat. The force exerted by a single tugboat must be equal to 
R, and its point of application A must be such that the moment of R about O is 
equal to   M  O  R    (Fig. 3). Observing that the position vector of A is

 r = xi + 70j 

you have

   
r × R

  
=

  
 M  O  R  

  
 
       (  xi + 70j )   ×  (  9.04i − 9.79j )     =  − 1035k       

 − x (  9.79 )  k − 633k 
  
=

  
− 1035k

  
 

  

REFLECT and THINK: Reducing the given situation to that of a single force 
makes it easier to visualize the overall effect of the tugboats in maneuvering the 
ocean liner. But in practical terms, having four boats applying force allows for 
greater control in slowing and turning a large ship in a crowded harbor.

 x = 41.1 ft ◂ 

Fig. 3 The point of application of 
a single tugboat to create the same 
effect as the given force system.

70 ft

x

9.04 i

–9.79 jR

A

O

Sample Problem 3.10
Three cables are attached to a bracket as shown. Replace the forces 
exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 
point A to the points of application of the various forces and resolve the 
forces into rectangular components. Then, sum the forces and moments.

MODELING and ANALYSIS: Note that FB = (700 N) λ BE,  
where

  λ BE   =     
⟶

 BE  ___ 
BE

   =   75i − 150j + 50k  _____________ 
175

   

Using meters and newtons, the position and force vectors are

   
 r B/A   =   

⟶
 AB  = 0.075i + 0.050k

  
  F B   = 300i − 600j + 200k

       r C/A   =   
⟶

 AC  = 0.075i − 0.050k    F C   = 707i − 707k     

 r D/A   =   
⟶

 AD  = 0.100i − 0.100j

  

  F D   = 600i + 1039j

   

The force-couple system at A equivalent to the given forces con-
sists of a force  R = ΣF  and a couple   M  A  R  = Σ(r × F) . Obtain the force 
R by adding respectively the x, y, and z components of the forces:

 R = ΣF = (1607 N)i + (439 N)j − (507 N)k ◂ 

(continued)
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75 mm 1000 N

1200 N
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D
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The topics covered in the optional sections in Statics include the reduc-
tion of a system of forces of a wrench, applications to hydrostatics, equilib-
rium of cables, products of inertia and Mohr’s circle, the determination of the 
principal axes and the mass moments of inertia of a body of arbitrary shape, 
and the method of virtual work. The sections on the inertia properties of 
three-dimensional bodies are primarily intended for students who will later 
study in dynamics the three-dimensional motion of rigid bodies.

The topics covered in the optional sections in Dynamics include graphi-
cal methods for the solution of rectilinear-motion problems, the trajectory of 
a particle under a central force, the deflection of fluid streams, problems 
involving jet and rocket propulsion, the kinematics and kinetics of rigid bodies 
in three dimensions, damped mechanical vibrations, and electrical analogues. 
These topics will be of particular interest when dynamics is taught in the 
junior year.

The material presented in the text and most of the problems require no 
previous mathematical knowledge beyond algebra, trigonometry, elementary 
calculus, and the elements of vector algebra presented in Chaps. 2 and 3 of 
the volume on statics. However, special problems are included, which make 
use of a more advanced knowledge of calculus, and certain sections, such as 
Secs. 19.5A and 19.5B on damped vibrations, should be assigned only if 
students possess the proper mathematical background. In portions of the text 
using elementary calculus, a greater emphasis is placed on the correct under-
standing and application of the concepts of differentiation and integration, 
than on the nimble manipulation of mathematical formulas. In this connection, 
it should be mentioned that the determination of the centroids of composite 
areas precedes the calculation of centroids by integration, thus making it pos-
sible to establish the concept of moment of area firmly before introducing the 
use of integration.
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xix

Chapter Introduction.  Each chapter begins with a list of learning objec-
tives and an outline that previews chapter topics. An introductory section 
describes the material to be covered in simple terms, and how it will be applied 
to the solution of engineering problems.

Chapter Lessons.  The body of the text is divided into sections, each con-
sisting of one or more sub-sections, several sample problems, and a large num-
ber of end-of-section problems for students to solve. Each section corresponds 
to a well-defined topic and generally can be covered in one lesson. In a number 
of cases, however, the instructor will find it desirable to devote more than one 
lesson to a given topic. The Instructor’s and Solutions Manual contains sugges-
tions on the coverage of each lesson.

Sample Problems.  The Sample Problems are set up in much the same 
form that students will use when solving assigned problems, and they employ 
the SMART problem-solving methodology that students are encouraged to use 
in the solution of their assigned problems. They thus serve the double purpose 
of reinforcing the text and demonstrating the type of neat and orderly work 
that students should cultivate in their own solutions. In addition, in-problem 
references and captions have been added to the sample problem figures for 
contextual linkage to the step-by-step solution. In the digital version, many 
Sample Problems now have simulations to help students visualize the problem. 
Enhanced digital content is indicated by a  within the text.

Concept Applications.  Concept Applications are used within selected the-
ory sections in the Statics volume to amplify certain topics, and they are designed 
to reinforce the specific material being presented and facilitate its understanding.

Solving Problems on Your Own.  A section entitled Solving Problems on 
Your Own is included for each lesson, between the sample problems and the 
problems to be assigned. The purpose of these sections is to help students orga-
nize in their own minds the preceding theory of the text and the solution methods 
of the sample problems so that they can more successfully solve the homework 
problems. Also included in these sections are specific suggestions and strategies 
that will enable the students to more efficiently attack any assigned problems.

 Case Studies.  Statics and dynamics principles are used extensively in 
engineering applications, particularly for the designing of solutions to problems 
and for failure analysis when those solutions do not work as planned. Much can 
be learned from the historical successes and failures of past designs, and unique 
insight can be gained by studying how engineers developed different products 
and structures. To this end, real-world Case Studies have been introduced in this 
revision to provide relevance and application to the principles of engineering 
mechanics being discussed. The Case Studies are developed using the SMART 
problem-solving methodology to present the story. In this way, they serve as both 
a practical illustration of the concepts linked to some real-world situation and 
reinforce the consistent five-step approach to solving engineering problems.
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1
The tallest skyscraper in the Western Hemisphere, One World Trade 

Center is a prominent feature of the New York City skyline. From its 

foundation to its structural components and mechanical systems, the 

design and operation of the tower is based on the fundamentals of 

engineering mechanics.

Introduction
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Sample Problem 4.10
A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD that has 
been bent as shown. The pipe is supported by ball-and-socket joints A and D, 
which are fastened, respectively, to the floor and to a vertical wall, and by a 
cable attached at the midpoint E of the portion BC of the pipe and at a point G 
on the wall. Determine (a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value of the tension.

STRATEGY: Draw the free-body diagram of the pipe showing the reac-
tions at A and D. Isolate the unknown tension T and the known weight W by 
 summing moments about the diagonal line AD, and compute values from the 
equilibrium equations.

MODELING and ANALYSIS:

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W = (–450 lb)j, the reactions at A and D, and the force T exerted by the cable 
(Fig. 1). To eliminate the reactions at A and D from the computations, take the 
sum of the moments of the forces about the line AD and set it equal to zero. 
Denote the unit vector along AD by λ, which enables you to write

    ΣM  AD   = 0:  λ · (  
⟶

 AE  × T) + λ · (  
⟶

 AC  × W) = 0   (1)

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

Fig. 1 Free-body diagram of the pipe.

A

B C DE

x

y

z

T

λ

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

(continued)
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have obtained enough equations, you can find a numerical solution by 
following the usual rules of algebra, neatly recording each step and the 
intermediate results. Alternatively, you can solve the resulting equations 
with your calculator or a computer. (For multipart problems, it is some-
times convenient to present the Modeling and Analysis steps together, 
but they are both essential parts of the overall process.)

 4. Reflect and Think. After you have obtained the answer, check it care-
fully. Does it make sense in the context of the original problem? For 
instance, the problem may ask for the force at a given point of a structure. 
If your answer is negative, what does that mean for the force at the point?

You can often detect mistakes in reasoning by checking the units. For 
example, to determine the moment of a force of 50 N about a point 0.60 m from 
its line of action, we write (Sec. 3.3A)

   M = Fd =  (  30 N )   (  0.60 m )   = 30 N·m   

The unit N·m obtained by multiplying newtons by meters is the correct unit for 
the moment of a force; if you had obtained another unit, you would know that 
some mistake had been made.

You can often detect errors in computation by substituting the numerical 
answer into an equation that was not used in the solution and verifying that the 
equation is satisfied. The importance of correct computations in engineering 
cannot be overemphasized.

CASE STUDY 1.1*
Located in Baltimore, Maryland, the Carrollton Viaduct is the oldest railroad 
bridge in North America and continues in revenue service today. Construction 
was completed and the bridge put into operation in 1829 by the Baltimore &  
Ohio Railroad. The structure includes the stone masonry arch shown in 
CS Photo 1.1, and spans 80 ft. Assuming that the span is solid granite having a 
unit weight of 170 lb/ft3, and that its dimensions can be approximated by those 
given in CS Fig. 1.1, let’s estimate the weight of this span.

*Adapted from American Railway Engineering Association, Bulletin 732, October 1991, p. 221.

CS Photo 1.1 The Carrollton Viaduct in Baltimore, MD.
AREA Bulletin 732 Volume 92 (October 1991)

(continued)

STRATEGY:
First calculate the volume of the span, and then multiply this volume by the unit 
weight.
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  In some instances, these Case Studies are examined further in 
the accompanying digital content through Connect®. The digital  
content also provides additional cases that are developed in their 
entirety.

Homework Problem Sets.  Most of the problems are of a 
practical nature and should appeal to engineering students. They 
are primarily designed, however, to illustrate the material pre-
sented in the text and to help students understand the principles 
of mechanics. The problems are grouped according to the por-
tions of material they illustrate and, in general, are arranged in 
order of increasing difficulty. Problems requiring special atten-
tion are indicated by asterisks. Answers to 70 percent of the 
problems are given at the end of the book. Problems for which 
the answers are given are set in straight type in the text, while 
problems for which no answer is given are set in italic and red 
font color.

Chapter Review and Summary.  Each chapter ends with 
a review and summary of the material covered in that chapter. 
Marginal notes are used to help students organize their review 
work, and cross-references have been included to help them find 
the portions of material requiring their special attention.

Review Problems.  A set of review problems is included at 
the end of each chapter. These problems provide students further 
opportunity to apply the most important concepts introduced in 
the chapter.

Computer Problems.  Accessible through Connect are 
problem sets for each chapter that are designed to be solved 
with computational software. Many of these problems are rel-
evant to the design process; they may involve the analysis of a 
structure for various configurations and loadings of the struc-
ture, or the determination of the equilibrium positions of a given 
mechanism that may require an iterative method of solution. 
Developing the algorithm required to solve a given mechanics 
problem will benefit the students in two different ways: (1) it 
will help them gain a better understanding of the mechanics 
principles involved; (2) it will provide them with an opportunity 
to apply their computer skills to the solution of a meaningful 
engineering problem.

Concept Questions.  Educational research has shown 
that students can often choose appropriate equations and solve 
algorithmic problems without having a strong conceptual 
understanding of mechanics principles.† To help assess and 
develop student conceptual understanding, we have included 
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In this chapter, we have studied the effect of forces on particles, i.e., on bodies 
of such shape and size that we may assume all forces acting on them apply at 
the same point.

Resultant of Two Forces
Forces are vector quantities; they are characterized by a point of application, 
a magnitude, and a direction, and they add according to the parallelogram law 
(Fig. 2.30). We can determine the magnitude and direction of the resultant R 
of two forces P and Q either graphically or by trigonometry using the law of 
cosines and the law of sines (Sample Prob. 2.1).

Components of a Force
Any given force acting on a particle can be resolved into two or more compo-
nents, i.e., it can be replaced by two or more forces that have the same effect 
on the particle. A force F can be resolved into two components P and Q by 
drawing a parallelogram with F for its diagonal; the components P and Q are 
then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 
Again, we can determine the components either graphically or by trigonometry 
(Sec. 2.1E).

Review and Summary

Fig. 2.30

Q

R

P

A

Rectangular Components; Unit Vectors
A force F is resolved into two rectangular components if its components Fx and 
Fy are perpendicular to each other and are directed along the coordinate axes 
(Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, respec-
tively, we can write the components and the vector as (Sec. 2.2A)

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

where Fx and Fy are the scalar components of F. These components, which can 
be positive or negative, are defined by the relations

   F x   = F cos θ    F y   = F sin θ  (2.8)

Fig. 2.31

Q
F

P

A

Fig. 2.32

F

x

y

Fy = Fy j

Fx = Fx i

j

i

θ
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 2.127 Two forces P and Q are applied to the lid of a storage bin as shown. 
Knowing that P = 48 N and Q = 60 N, determine by trigonometry the 
magnitude and direction of the resultant of the two forces.

 2.128 Determine the x and y components of each of the forces shown.

Review Problems

 2.129 A hoist trolley is subjected to the three forces shown. Knowing that  
α = 40° , determine (a) the required magnitude of the force P if the 
resultant of the three forces is to be vertical, (b) the corresponding 
magnitude of the resultant.

 2.130 Knowing that  α = 55°  and that boom AC exerts on pin C a force 
directed along line AC, determine (a) the magnitude of that force,  
(b) the tension in cable BC.

Fig. P2.127

A

55°

25°

85°
P

Q

Fig. P2.128

80 N

120 N

150 N 30°

35° 40°

y

x

Fig. P2.129

α

α

200 lb
400 lb

P

Fig. P2.130

30° 20°

α

300 lb

A

B

C

†Hestenes, D., Wells, M., and Swakhamer, G (1992). The force concept 
inventory. The Physics Teacher, 30: 141–158.
Streveler, R. A., Litzinger, T. A., Miller, R. L., and Steif, P. S. (2008). 
Learning conceptual knowledge in the engineering sciences: Overview 
and future research directions, JEE, 279–294.

 

Approximately 650 of the homework problems in the 
text are new or revised.
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Concept Questions, which are multiple choice problems that require few, if any, 
calculations. Each possible incorrect answer typically represents a common 
misconception (e.g., students often think that a vehicle moving in a curved path 
at constant speed has zero acceleration). Students are encouraged to solve these 
problems using the principles and techniques discussed in the text and to use 
these principles to help them develop their intuition. Mastery and discussion of 
these Concept Questions will deepen students’ conceptual understanding and 
help them to solve dynamics problems.

Free Body and Impulse-Momentum Diagram 
Practice Problems.  Drawing diagrams correctly is a 
critical step in solving kinetics problems in dynamics. A new 
type of problem has been added to the text to emphasize the 
importance of drawing these diagrams. In Chaps. 12 and 16 
the Free Body Practice Problems require students to draw a 
free-body diagram (FBD) showing the applied forces and an 
equivalent diagram called a “kinetic diagram” (KD) showing 
ma or its components and  Īα. These diagrams provide stu-
dents with a pictorial representation of Newton’s second law 
and are critical in helping students to correctly solve kinetic 
problems. In Chaps. 13 and 17 the Impulse-Momentum 
Diagram Practice Problems require students to draw dia-
grams showing the momenta of the bodies before impact, the 
impulses exerted on the body during impact, and the final 
momenta of the bodies. The answers to all of these questions 
can be accessed through Connect.
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FREE-BODY PRACTICE PROBLEMS

 16.F1 A 6-ft board is placed in a truck with one end resting against a block 
secured to the floor and the other leaning against a vertical partition. 
Draw the FBD and KD necessary to determine the maximum allow-
able acceleration of the truck if the board is to remain in the position 
shown.

 16.F2 A uniform circular plate of mass 3 kg is attached to two links AC and 
BD of the same length. Knowing that the plate is released from rest in 
the position shown, in which lines joining G to A and B are, respec-
tively, horizontal and vertical, draw the FBD and KD for the plate.

C

A

D

B

G

75°

75°

Fig. P16.F2

 16.F3 Two uniform disks and two cylinders are assembled as indicated. Disk 
A weighs 20 lb and disk B weighs 12 lb. Knowing that the system is 
released from rest, draw the FBD and KD for the whole system.

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.F3

 16.F4 The 400-lb crate shown is lowered by means of two overhead cranes. 
Knowing the tension in each cable, draw the FBD and KD that can be 
used to determine the angular acceleration of the crate and the accel-
eration of the center of gravity.

A

B

78°

Fig. P16.F1

TA TB

6.6 ft

3.6 ft

3.3 ft

1.8 ft

A

G

B

Fig. P16.F4
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xxiii

Connect® is a highly reliable, easy-to-use home-
work and learning management solution that 
embeds learning science and award-winning adap-

tive tools to improve student results.

Analytics  Connect Insight is Connect’s one-
of-a-kind visual analytics dashboard. Now avail-
able for both instructors and students, it provides 

at-a-glance information regarding student performance, which is immediately 
actionable. By presenting assignment, assessment, and topical performance 
results together with a time metric that is easily visible for aggregate or indi-
vidual results, Connect InSight gives the user the ability to take a just-in-time 
approach to teaching and learning, which was never before available. Connect 
Insight presents data that empower students and help instructors improve class 
performance in a way that is efficient and effective.

Autograded Free-Body Diagram Problems

∙	 Within Connect, algorithmic end-of-chapter problems include our new 
Free-Body Diagram Drawing tool. The Free-Body Diagram Tool allows 
students to draw free-body diagrams that are auto graded by the system. Stu-
dent’s receive immediate feedback on their diagrams to help student’s solid-
ify their understanding of the physical situation presented in the problem.

Case Study Interactives
 New digital content has been added throughout the text to enhance student 

learning. This includes a more in-depth discussion of the new Case Studies, 
as well as interactive questions embedded in these video explorations to make 
students think about the problem rather than just viewing the video. Within 
the text, simulations and short videos have been added to help students visual-
ize topics, such as zero-force members and the motion of different linkages.

Find the following instructor resources available through Connect:

∙	 Instructor’s and Solutions Manual. The Instructor’s and Solutions 
Manual that accompanies the twelfth edition features solutions to all 
end of chapter problems. This manual also features a number of tables 
designed to assist instructors in creating a schedule of assignments for 
their course. The various topics covered in the text have been listed in 
Table I and a suggested number of periods to be spent on each topic has 
been indicated. Table II prepares a brief description of all groups of prob-
lems and a classification of the problems in each group according to the 
units used. Sample lesson schedules are shown in Tables III, IV, and V, 
together with various alternative lists of assigned homework problems.

∙	 Lecture PowerPoint Slides for each chapter that can be modified. These 
generally have an introductory application slide, animated worked-out 
problems that you can do in class with your students, concept questions, 
and “what-if?” questions at the end of the units.

Digital Resources

NEW!
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xxiv  Digital Resources

SmartBook helps students study 
more efficiently by highlighting 

where in the chapter to focus, asking review questions and pointing them to 
resources until they understand.

∙	 Textbook images
∙	 Computer Problem sets for each chapter that are designed to be solved 

with computational software.
∙	 C.O.S.M.O.S., the Complete Online Solutions Manual Organization Sys-

tem that allows instructors to create custom homework, quizzes, and tests 
using end-of-chapter problems from the text.
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xxvii

	 a, a	 Acceleration
	 a	 Constant; radius; distance; semimajor  

axis of ellipse
	​ ​a ¯ ​​, ​​ a ¯ ​​	 Acceleration of mass center
	 aB/A	 Acceleration of B relative to frame in translation with A
	 aP/ℱ	 Acceleration of P relative to rotating frame ℱ
	 ac	 Coriolis acceleration
	 A, B, C, . . .	 Reactions at supports and connections
	 A, B, C, . . .	 Points
	 A	 Area
	 b	 Width; distance; semiminor axis of ellipse
	 c	 Constant; coefficient of viscous damping
	 C	 Centroid; instantaneous center of rotation; capacitance
	 d	 Distance
	 en, et	 Unit vectors along normal and tangent
	 er, eθ	 Unit vectors in radial and transverse directions
	 e	 Coefficient of restitution; base of natural logarithms
	 E	 Total mechanical energy; voltage
	 f	 Scalar function
	 ff	 Frequency of forced vibration
	 fn	 Natural frequency
	 F	 Force; friction force
	 g	 Acceleration of gravity
	 G	 Center of gravity; mass center; constant of gravitation
	 h	 Angular momentum per unit mass
	 HO	 Angular momentum about point O
	​ ​​H ˙ ​​ G​​​	 Rate of change of angular momentum HG with respect to 

frame of fixed orientation
	​ ​(​​H ˙ ​​ G​​ )​ Gxyz​​​	 Rate of change of angular momentum HG with respect to 

rotating frame Gxyz
	 i, j, k	 Unit vectors along coordinate axes
	 i	 Current
	 I,  Ix, . . .	 Moments of inertia
	​ ​ I ̄ ​​	 Centroidal moment of inertia
	 Ixy, . . .	 Products of inertia
	 J	 Polar moment of inertia
	 k	 Spring constant
	 kx, ky, kO	 Radii of gyration
	​ ​ k ¯ ​​	 Centroidal radius of gyration
	 l	 Length
	 L	 Linear momentum
	 L	 Length; inductance
	 m	 Mass
	 m′	 Mass per unit length
	 M	 Couple; moment
	 MO	 Moment about point O

List of Symbols
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	​ ​M​ O​ R​​	 Moment resultant about point O
	 M	 Magnitude of couple or moment; mass of earth
	 MOL	 Moment about axis OL
	 n	 Normal direction
	 N	 Normal component of reaction
	 O	 Origin of coordinates
	 P	 Force; vector
	​ ​P ˙ ​​	 Rate of change of vector P with respect to frame of fixed 

orientation
	 q	 Mass rate of flow; electric charge
	 Q	 Force; vector
	​ ​Q ˙ ​​	 Rate of change of vector Q with respect to frame of fixed 

orientation
	​ ​(​Q ˙ ​ )​ Oxyz​​​	 Rate of change of vector Q with respect to frame Oxyz
	 r	 Position vector
	 rB/A	 Position vector of B relative to A
	 r	 Radius; distance; polar coordinate
	 R	 Resultant force; resultant vector; reaction
	 R	 Radius of earth; resistance
	 s	 Position vector
	 s	 Length of arc
	 t	 Time; thickness; tangential direction
	 T	 Force
	 T	 Tension; kinetic energy
	 u	 Velocity
	 u	 Variable
	 U	 Work
	​ ​U​ 1–2​ NC​​	 work done by non-conservative forces
	 v, v	 Velocity
	 v	 Speed
	​ ​v ¯ ​, ​ v ¯ ​​	 Velocity of mass center
	 vB/A	 Velocity of B relative to frame in translation with A
	 vP/ℱ	 Velocity of P relative to rotating  

frame ℱ
	 V	 Vector product
	 V	 Volume; potential energy
	 w	 Load per unit length
	 W, W	 Weight; load
	 x, y, z	 Rectangular coordinates; distances
	​ ​x ̇ ​, ​y ̇ ​, ​z ̇ ​​ 	 Time derivatives of coordinates x, y, z
	​ ​x ̄ ​, ​ y ¯ ​, ​ z ̄ ​​	 Rectangular coordinates of centroid, center of gravity, or mass 

center
	 α, α	 Angular acceleration
	 α, β, γ	 Angles
	 γ	 Specific weight
	 δ	 Elongation
	 ε	 Eccentricity of conic section or of orbit
	 λ	 Unit vector along a line
	 η	 Efficiency
	 θ	 Angular coordinate; Eulerian angle; angle; polar 

coordinate
	 μ	 Coefficient of friction
	 ρ	 Density; radius of curvature
	 τ	 Periodic time

xxviii  List of Symbols
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List of Symbols  xxix

	 τn	 Period of free vibration
	 ϕ	 Angle of friction; Eulerian angle; phase angle; angle
	 φ	 Phase difference
	 ψ	 Eulerian angle
	 ω, ω	 Angular velocity
	 ωf	 Circular frequency of forced vibration
	 ωn	 Natural circular frequency
	 Ω	 Angular velocity of frame of reference
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1
The tallest skyscraper in the Western Hemisphere, One World Trade 

Center is a prominent feature of the New York City skyline. From its 

foundation to its structural components and mechanical systems, the 

design and operation of the tower is based on the fundamentals of 

engineering mechanics.

Introduction
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1.1  WHAT IS MECHANICS?
Mechanics is defined as the science that describes and predicts the conditions 
of rest or motion of bodies under the action of forces. It consists of the mechan-
ics of rigid bodies, mechanics of deformable bodies, and mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics.  
Statics deals with bodies at rest; dynamics deals with bodies in motion. In 
this text, we assume bodies are perfectly rigid. In fact, actual structures and 
machines are never absolutely rigid; they deform under the loads to which they 
are subjected. However, because these deformations are usually small, they do 
not appreciably affect the conditions of equilibrium or the motion of the struc-
ture under consideration. They are important, though, as far as the resistance 
of the structure to failure is concerned. Deformations are studied in a course in 
mechanics of materials, which is part of the mechanics of deformable bodies. 
The third division of mechanics, the mechanics of fluids, is subdivided into the 
study of incompressible fluids and of compressible fluids. An important sub-
division of the study of incompressible fluids is hydraulics, which deals with 
applications involving water.

Mechanics is a physical science, because it deals with the study of physi-
cal phenomena. However, some teachers associate mechanics with mathemat-
ics, whereas many others consider it as an engineering subject. Both of these 
views are justified in part. Mechanics is the foundation of most engineering 
sciences and is an indispensable prerequisite to their study. However, it does 
not have the empiricism found in some engineering sciences, i.e., it does not 
rely on experience or observation alone. The rigor of mechanics and the empha-
sis it places on deductive reasoning makes it resemble mathematics. However, 
mechanics is not an abstract or even a pure science; it is an applied science.

The purpose of mechanics is to explain and predict physical phenomena 
and thus to lay the foundations for engineering applications. You need to know 
statics to determine how much force will be exerted on a point in a bridge design 
and whether the structure can withstand that force. Determining the force a dam 
needs to withstand from the water in a river requires statics. You need statics 
to calculate how much weight a crane can lift, how much force a locomotive 
needs to pull a freight train, or how much force a circuit board in a computer 
can withstand. The concepts of dynamics enable you to analyze the flight char-
acteristics of a jet, design a building to resist earthquakes, and mitigate shock 
and vibration to passengers inside a vehicle. The concepts of dynamics enable 

Introduction

	 1.1	 WHAT IS MECHANICS?
	 1.2	 FUNDAMENTAL 

CONCEPTS AND 
PRINCIPLES

	 1.3	 SYSTEMS OF UNITS
	 1.4	 CONVERTING BETWEEN 

TWO SYSTEMS OF UNITS
	 1.5	 METHOD OF SOLVING 

PROBLEMS
	 1.6	 NUMERICAL ACCURACY

Objectives
	•	 Define the science of mechanics and examine its fundamen-

tal principles.

	•	 Discuss and compare the International System of Units  
and U.S. customary units.

	•	 Discuss how to approach the solution of mechanics 
problems, and introduce the SMART problem-solving 
methodology.

	•	 Examine factors that govern numerical accuracy in the  
solution of a mechanics problem.
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you to calculate how much force you need to send a satellite into orbit, acceler-
ate a 200,000-ton cruise ship, or design a toy truck that doesn’t break. You will 
not learn how to do these things in this course, but the ideas and methods you 
learn here will be the underlying basis for the engineering applications you will 
learn in your work.

1.2  �FUNDAMENTAL CONCEPTS 
AND PRINCIPLES

Although the study of mechanics goes back to the time of Aristotle (384–322 B.C.)  
and Archimedes (287–212 B.C.), not until Newton (1642–1727) did anyone 
develop a satisfactory formulation of its fundamental principles. These prin-
ciples were later modified by d’Alembert, Lagrange, and Hamilton. Their 
validity remained unchallenged until Einstein formulated his theory of  
relativity (1905). Although its limitations have now been recognized, newtonian  
mechanics still remains the basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and force. 
These concepts cannot be truly defined; they should be accepted on the basis 
of our intuition and experience and used as a mental frame of reference for our 
study of mechanics.

The concept of space is associated with the position of a point P. We can 
define the position of P by providing three lengths measured from a certain 
reference point, or origin, in three given directions. These lengths are known as 
the coordinates of P.

To define an event, it is insufficient to indicate its position in space. We 
also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies on the 
basis of certain fundamental mechanical experiments. Two bodies of the same 
mass, for example, are attracted by the earth in the same manner; they also offer 
the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can be 
exerted by actual contact, like a push or a pull, or at a distance, as in the case 
of gravitational or magnetic forces. A force is characterized by its point of 
application, its magnitude, and its direction; a force is represented by a vector  
(Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute concepts 
that are independent of each other. (This is not true in relativistic mechanics, 
where the duration of an event depends upon its position and the mass of a body 
varies with its velocity.) On the other hand, the concept of force is not indepen-
dent of the other three. Indeed, one of the fundamental principles of newtonian 
mechanics listed below is that the resultant force acting on a body is related to 
the mass of the body and to the manner in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of particles 
and rigid bodies in terms of the four basic concepts we have introduced. By 
particle, we mean a very small amount of matter, which we assume occupies a 
single point in space. A rigid body consists of a large number of particles occu-
pying fixed positions with respect to one another. The study of the mechanics of 
particles is therefore a prerequisite to that of rigid bodies. Besides, we can use 
the results obtained for a particle directly in a large number of problems dealing 
with the conditions of rest or motion of actual bodies.

The study of elementary mechanics rests on six fundamental principles, 
based on experimental evidence.
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	 ∙	 The Parallelogram Law for the Addition of Forces. Two forces acting 
on a particle may be replaced by a single force, called their resultant, 
obtained by drawing the diagonal of the parallelogram with sides equal to 
the given forces (Sec. 2.1A).

	 ∙	 The Principle of Transmissibility. The conditions of equilibrium or of 
motion of a rigid body remain unchanged if a force acting at a given point 
of the rigid body is replaced by a force of the same magnitude and same 
direction, but acting at a different point, provided that the two forces have 
the same line of action (Sec. 3.1B).

	 ∙	 Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton in 
the late seventeenth century, these laws can be stated as follows:

		  FIRST LAW. If the resultant force acting on a particle is zero, the par-
ticle remains at rest (if originally at rest) or moves with constant speed in 
a straight line (if originally in motion) (Sec. 2.3B).

		  SECOND LAW. If the resultant force acting on a particle is not zero, the 
particle has an acceleration proportional to the magnitude of the resultant 
and in the direction of this resultant force.

		  As you will see in Sec. 12.1, this law can be stated as

	​ F = ma​	 (1.1)

		  where F, m, and a represent, respectively, the resultant force acting on 
the particle, the mass of the particle, and the acceleration of the particle 
expressed in a consistent system of units.

		  THIRD LAW. The forces of action and reaction between bodies in con-
tact have the same magnitude, same line of action, and opposite sense 
(Chap. 6, Introduction).

	 ∙	 Newton’s Law of Gravitation. Two particles of mass M and m are mutu-
ally attracted with equal and opposite forces F and –F of magnitude F 
(Fig. 1.1), given by the formula

	​ F = G ​ Mm ____ 
​r​​2​

  ​​	 (1.2)

		  where r = the distance between the two particles and G = a universal con-
stant called the constant of gravitation. Newton’s law of gravitation intro-
duces the idea of an action exerted at a distance and extends the range  
of application of Newton’s third law: the action F and the reaction –F in 
Fig. 1.1 are equal and opposite, and they have the same line of action.

A particular case of great importance is that of the attraction of the earth 
on a particle located on its surface. The force F exerted by the earth on the par-
ticle is defined as the weight W of the particle. Suppose we set M equal to the 
mass of the earth, m equal to the mass of the particle, and r equal to the earth’s 
radius R. Then, introducing the constant

	​ g = ​ GM ____ 
​R​​2​

  ​​	 (1.3)

we can express the magnitude W of the weight of a particle of mass m as†

	​ W = mg​	 (1.4)

The value of R in formula (1.3) depends upon the elevation of the point consid-
ered; it also depends upon its latitude, because the earth is not truly spherical.  
The value of g therefore varies with the position of the point considered. 

†A more accurate definition of the weight W should take into account the earth’s rotation.

Fig. 1.1  From Newton’s law of gravitation, 
two particles of masses M and m exert 
forces upon each other of equal magnitude, 
opposite direction, and the same line of 
action. This also illustrates Newton’s third 
law of motion.

M

–F

F

m

r
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However, as long as the point actually remains on the earth’s surface, it is suf-
ficiently accurate in most engineering computations to assume that g equals 
9.81 m/s2 or 32.2 ft/s2.

The principles we have just listed will be introduced in the course of our 
study of mechanics as they are needed. The statics of particles carried out in 
Chap. 2 will be based on the parallelogram law of addition and on Newton’s 
first law alone. We introduce the principle of transmissibility in Chap. 3 as we 
begin the study of the statics of rigid bodies, and we bring in Newton’s third 
law in Chap. 6 as we analyze the forces exerted on each other by the various 
members forming a structure. We introduce Newton’s second law and Newton’s 
law of gravitation in dynamics. We will then show that Newton’s first law is 
a particular case of Newton’s second law (Sec. 12.1) and that the principle of 
transmissibility could be derived from the other principles and thus eliminated 
(Sec. 16.1D). In the meantime, however, Newton’s first and third laws, the par-
allelogram law of addition, and the principle of transmissibility will provide us 
with the necessary and sufficient foundation for the entire study of the statics of 
particles, rigid bodies, and systems of rigid bodies.

As noted earlier, the six fundamental principles listed previously are 
based on experimental evidence. Except for Newton’s first law and the principle 
of transmissibility, they are independent principles that cannot be derived math-
ematically from each other or from any other elementary physical principle. 
On these principles rests most of the intricate structure of newtonian mechan-
ics. For more than two centuries, engineers have solved a tremendous number 
of problems dealing with the conditions of rest and motion of rigid bodies, 
deformable bodies, and fluids by applying these fundamental principles. Many 
of the solutions obtained could be checked experimentally, thus providing a 
further verification of the principles from which they were derived. Only in 
the twentieth century has Newton’s mechanics been found to be at fault, in the 
study of the motion of atoms and the motion of the planets, where it must be 
supplemented by the theory of relativity. On the human or engineering scale, 
however, where velocities are small compared with the speed of light, Newton’s 
mechanics have yet to be disproved.

1.3  SYSTEMS OF UNITS
Associated with the four fundamental concepts just discussed are the so-called 
kinetic units, i.e., the units of length, time, mass, and force. These units cannot 
be chosen independently if Eq. (1.1) is to be satisfied. Three of the units may be 
defined arbitrarily; we refer to them as basic units. The fourth unit, however, 
must be chosen in accordance with Eq. (1.1) and is referred to as a derived 
unit. Kinetic units selected in this way are said to form a consistent system  
of units.

International System of Units (SI Units).†  In this system, which will 
be in universal use after the United States has completed its conversion to SI 
units, the base units are the units of length, mass, and time, and they are called, 
respectively, the meter (m), the kilogram (kg), and the second (s). All three 
are arbitrarily defined. The second was originally chosen to represent 1/86 400 
of the mean solar day, but it is now defined as the duration of 9 192 631 770 
cycles of the radiation corresponding to the transition between two levels of the 
fundamental state of the cesium-133 atom. The meter, originally defined as one 

†SI stands for Système International d’Unités (French).

Photo 1.1  When in orbit of the earth, 
people and objects are said to be 
weightless, even though the gravitational 
force acting is approximately 90% of that 
experienced on the surface of the earth.  
This apparent contradiction will be resolved 
in Chapter 12 when we apply Newton’s 
second law to the motion of particles.
Source: NASA
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ten-millionth of the distance from the equator to either pole, is now defined as  
1 650 763.73 wavelengths of the orange-red light corresponding to a certain 
transition in an atom of krypton-86. (The newer definitions are much more pre-
cise, and with today’s modern instrumentation, are easier to verify as a stan-
dard.) The kilogram, which is approximately equal to the mass of 0.001  m3 
of water, is defined as the mass of a platinum-iridium standard kept at the 
International Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the newton (N) and is defined as 
the force that gives an acceleration of 1 m/s2 to a body of mass 1 kg (Fig. 1.2). 
From Eq. (1.1), we have

	​ 1 N = (1 kg)(1 ​m/s​​2​) = 1 kg·​m/s​​2​​	 (1.5)

The SI units are said to form an absolute system of units. This means that the 
three base units chosen are independent of the location where measurements 
are made. The meter, the kilogram, and the second may be used anywhere on 
the earth; they may even be used on another planet and still have the same 
significance.

The weight of a body, or the force of gravity exerted on that body, like any 
other force, should be expressed in newtons. From Eq. (1.4), it follows that the 
weight of a body of mass 1 kg (Fig. 1.3) is

	​ ​
W

​ 
=

​ 
mg

​ ​​  =​ (1 kg)(9.81 ​m/s​​2​)​  
​
​ 

=
​ 
9.81 N

  ​​	

Multiples and submultiples of the fundamental SI units are denoted 
through the use of the prefixes defined in Table 1.1. The multiples and submul-
tiples of the units of length, mass, and force most frequently used in engineering 
are, respectively, the kilometer (km) and the millimeter (mm); the megagram‡ 
(Mg) and the gram (g); and the kilonewton (kN). According to Table 1.1,  
we have

	​ ​ 
1 km

​ 
=

​ 
1000 m

​ 
1 mm

​ 
=

​ 
0.001 m

​   1 Mg​ =​ 1000 kg​  1 g​ =​ 0.001 kg​   
1 kN

​ 
=

​ 
1000 N

​ 
​
​ 

​
​ 

​
  ​​	

The conversion of these units into meters, kilograms, and newtons, respectively, 
can be effected by simply moving the decimal point three places to the right or 
to the left. For example, to convert 3.82 km into meters, move the decimal point 
three places to the right:

	​ ​3.82 km​  =​  3820 m​​	

Similarly, to convert 47.2 mm into meters, move the decimal point three places 
to the left:

	​ ​47.2 mm​  =​  0.0472 m​​	

Using engineering notation, you can also write

	​ ​ 3.82 km​  =​  3.82 × ​10​​3​  m​   
47.2 mm

​ 
=

​ 
47.2 × ​10​​w−3​  m

​​	

The multiples of the unit of time are the minute (min) and the hour (h). 
Because 1 min = 60 s and 1 h = 60 min = 3600 s, these multiples cannot be 
converted as readily as the others.

‡Also known as a metric ton.

Fig. 1.2  A force of 1 newton applied to a 
body of mass 1 kg provides an acceleration 
of 1 m/s2.

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.3  A body of mass 1 kg experiencing 
an acceleration due to gravity of 9.81 m/s2 
has a weight of 9.81 N.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N
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By using the appropriate multiple or submultiple of a given unit, you can 
avoid writing very large or very small numbers. For example, it is usually simpler 
to write 427.2 km rather than 427 200 m and 2.16 mm rather than 0.002 16 m.†

Units of Area and Volume.  The unit of area is the square meter (m2), 
which represents the area of a square of side 1 m; the unit of volume is the cubic 
meter (m3), which is equal to the volume of a cube of side 1 m. In order to avoid 
exceedingly small or large numerical values when computing areas and vol-
umes, we use systems of subunits obtained by respectively squaring and cubing 
not only the millimeter, but also two intermediate submultiples of the meter: the 
decimeter (dm) and the centimeter (cm). By definition,

	​ ​ 
1 dm

​ 
=

​ 
​0.1​​​​  m = ​10​​−1​  m

​  1 cm​ =​ 0.01 m = ​10​​−2​  m​  
1 mm

​ 
=

​ 
0.001 m = ​10​​−3​  m

​​	

Therefore, the submultiples of the unit of area are

	​ ​ 
1  ​dm​​2​

​ 
=

​ 
(1 dm ​)​​2​ = ( ​10​​−1​  m ​)​​2​ = ​10​​−2​   ​m​​2​

​    1  ​cm​​2​​ =​ (1 cm ​)​​2​ = ( ​10​​−2​  m ​)​​2​ = ​10​​−4​   ​m​​2​​    
1  ​mm​​2​

​ 
=

​ 
(1 mm ​)​​2​ = ( ​10​​−3​  m ​)​​2​ = ​10​​−6​   ​m​​2​

​​	

Similarly, the submultiples of the unit of volume are

	​ ​ 
1  ​dm​​3​

​ 
=

​ 
(1 dm ​)​​3​ = ( ​10​​−1​  m ​)​​3​ = ​10​​−3​   ​m​​3​

​    1  ​cm​​3​​ =​ (1 cm ​)​​3​ = ( ​10​​−2​  m ​)​​3​ = ​10​​−6​   ​m​​3​​    
1  ​mm​​3​

​ 
=

​ 
(1 mm ​)​​3​ = ( ​10​​−3​  m ​)​​3​ = ​10​​−9​   ​m​​3​

​​	

Note that when measuring the volume of a liquid, the cubic decimeter (dm3) is 
usually referred to as a liter (L).

†Note that when more than four digits appear on either side of the decimal point to express a 
quantity in SI units—as in 427 000 m or 0.002 16 m—use spaces, never commas, to separate 
the digits into groups of three. This practice avoids confusion with the comma used in place of 
a decimal point, which is the convention in many countries.

Multiplication Factor Prefix† Symbol

1 000 000 000 000 = 1012 Tera T
1 000 000 000 = 109 Giga G

1 000 000 = 106 Mega M
1 000 = 103 Kilo k

100 = 102 Hecto‡ h
10 = 101 Deka‡ da
0.1 = 10–1 Deci‡ d

0.01 = 10–2 Centi‡ c
0.001 = 10–3 Milli m

0.000 001 = 10–6 Micro μ
0.000 000 001 = 10–9 Nano n

0.000 000 000 001 = 10–12 Pico p
0.000 000 000 000 001 = 10–15 Femto f

0.000 000 000 000 000 001 = 10–18 Atto a

†The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second.
‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.

Table 1.1  SI Prefixes
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Table 1.2 shows other derived SI units used to measure the moment of a 
force, the work of a force, etc. Although we will introduce these units in later 
chapters as they are needed, we should note an important rule at this time: 
When a derived unit is obtained by dividing a base unit by another base unit, 
you may use a prefix in the numerator of the derived unit, but not in its denomi-
nator. For example, the constant k of a spring that stretches 20 mm under a load 
of 100 N is expressed as

	​ k = ​ 100 N ______ 
20 mm

 ​ = ​  100 N _______ 
0.020 m

 ​ = 5000 N/m or k = 5 kN/m​	

but never as k = 5 N/mm.

U.S. Customary Units.  Most practicing American engineers still com-
monly use a system in which the base units are those of length, force, and time. 
These units are, respectively, the foot (ft), the pound (lb), and the second (s). 
The second is the same as the corresponding SI unit. The foot is defined as 
0.3048 m. The pound is defined as the weight of a platinum standard, called 
the standard pound, which is kept at the National Institute of Standards and 
Technology outside Washington, DC, the mass of which is 0.453 592 43 kg. 
Because the weight of a body depends upon the earth’s gravitational attraction, 
which varies with location, the standard pound should be placed at sea level and 
at a latitude of 45° to properly define a force of 1 lb. Thus, the U.S. customary 
units do not form an absolute system of units. Because they depend upon the 
gravitational attraction of the earth, they form a gravitational system of units.

Although the standard pound also serves as the unit of mass in commer-
cial transactions in the United States, it cannot be used that way in engineering 

Table 1.2  Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration Meter per second squared . . . m/s2

Angle Radian rad †
Angular acceleration Radian per second squared . . . rad/s2

Angular velocity Radian per second . . . rad/s
Area Square meter . . . m2

Density Kilogram per cubic meter . . . kg/m3

Energy Joule J N·m
Force Newton N kg·m/s2

Frequency Hertz Hz s–1

Impulse Newton-second . . . kg·m/s
Length Meter m ‡
Mass Kilogram kg ‡
Moment of a force Newton-meter . . . N·m
Power Watt W J/s
Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s ‡
Velocity Meter per second . . . m/s
Volume
  Solids Cubic meter . . . m3

  Liquids Liter L 10–3 m3

Work Joule J N·m
†Supplementary unit (1 revolution = 2π rad = 360°).
‡Base unit.
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computations, because such a unit would not be consistent with the base units 
defined in the preceding paragraph. Indeed, when acted upon by a force of  
1 lb—that is, when subjected to the force of gravity—the standard pound has 
the acceleration due to gravity, g = 32.2 ft/s2 (Fig. 1.4), not the unit acceleration 
required by Eq. (1.1). The unit of mass consistent with the foot, the pound, and 
the second is the mass that receives an acceleration of 1 ft/s2 when a force of  
1 lb is applied to it (Fig. 1.5). This unit, sometimes called a slug, can be derived 
from the equation F = ma after substituting 1 lb for F and 1 ft/s2 for a. We have

	​ F = ma   1 lb = (1 slug)(1 ft / ​s​​2​)​	
This gives us

	​ 1 slug = ​  1 lb _____ 
1​ ft/s​​2​

 ​ = 1 lb·​s​​2​ / ft​	 (1.6)

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 times 
larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are character-
ized by their weight in pounds rather than by their mass in slugs is convenient in 
the study of statics, where we constantly deal with weights and other forces and 
only seldom deal directly with masses. However, in the study of dynamics, where 
forces, masses, and accelerations are involved, the mass m of a body is expressed 
in slugs when its weight W is given in pounds. Recalling Eq. (1.4), we write

	​ m = ​ W ___ 
g
 ​​	 (1.7)

where g is the acceleration due to gravity (g = 32.2 ft/s2).
Other U.S. customary units frequently encountered in engineering prob-

lems are the mile (mi), equal to 5280 ft; the inch (in.), equal to (1/12) ft; and 
the kilopound (kip), equal to 1000 lb. The ton is often used to represent a mass 
of 2000 lb but, like the pound, must be converted into slugs in engineering 
computations.

The conversion into feet, pounds, and seconds of quantities expressed 
in other U.S. customary units is generally more involved and requires greater 
attention than the corresponding operation in SI units. For example, suppose we 
are given the magnitude of a velocity v = 30 mi/h and want to convert it to ft/s. 
First we write

	​ v = 30 ​ mi ___ 
h
 ​​	

Because we want to get rid of the unit miles and introduce instead the unit feet, 
we should multiply the right-hand member of the equation by an expression con-
taining miles in the denominator and feet in the numerator. However, because 
we do not want to change the value of the right-hand side of the equation, the 
expression used should have a value equal to unity. The quotient (5280 ft)/ 
(1 mi) is such an expression. Operating in a similar way to transform the unit 
hour into seconds, we have

	​ v = ​​ (30 ​ mi _ 
h
 ​) ​​ (​ 5280 ft _ 

1 mi
 ​ ) ​​ (​  1 h _ 

3600 s
 ​) ​​​	

Carrying out the numerical computations and canceling out units that appear in 
both the numerator and the denominator, we obtain

	​ v = 44 ​ ft __ 
s
 ​ = 44 ft/s​	

Fig. 1.4  A body of 1 pound mass 
acted upon by a force of 1 pound has an 
acceleration of 32.2 ft/s2.

a = 32.2 ft /s2

m = 1 lb mass

F = 1 lb

Fig. 1.5  A force of 1 pound applied 
to a body of mass 1 slug produces an 
acceleration of 1 ft/s2.

a = 1 ft /s2

m = 1 slug
(= 1 lb ∙ s2/ft) 

F = 1 lb
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